CONCURRENT 50% TECHNOLOGIES

"Dreams to Reality"

Presented By:

Nigel Forrester
Director of Strategy
Concurrent Technologies

Dream?

The Sensor Open Systems Architecture™ Approach: **Leverage Existing Open Standards**

SOSA Technical Standard and Ecosystem

The Open Group® SOSA Consortium contributors: Army, Navy, Air Force, Other Government Agencies, Industry, and Academia Defining Best Standards & Practices for Open Modular Sensor Systems

CONCURRENT SECHNOLOGIES *In support of the US DoD MOSA Mandate memo.

^{**} Representative group. Not all associated standards are listed.

Our Working Environments

Office Based

Our Working Environments

Hybrid (Remote / Office Based)

Team Building and Well-Being

Technology Challenges

- PCle Data plane
- 10/40G Ethernet
- PCle Gen 3
- Rudimentary management

- Ethernet data plane
- 25/100G Ethernet
- PCIe Gen 4 (and Gen 5 this year)
- Enhanced management

New Generation of Building Blocks

- Components
- Chassis
- Backplanes
- Payloads:
 - CPU
 - GPGPU
 - FPGA
- Switches
- Timing

Timing

- Fundamental for Applications like:
 - SIGINT, ELINT, COMINT
 - RADAR
 - EW
 - EOIR

Martinvl, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

Compliance

- OpenVPX™ Profiles:
 - SLT3x-TIM-2S1U22S1U2U1H-14.9.2-1
 - MOD3x-TIM-2S1U22S1U2U1H-16.9.2-2

Radial Clocking – System Context

System Timing Functional Perspective (GNSS Source)

System Timing Functional Perspective (GNSS fail – CSAC holdover)

System Timing Functional Perspective (GNSS Source)

What is A-PNT & Why is it Needed?

(P) Position

- Where you are
- Aim to be accurate to centimeter level

(N) Navigation

Allows you get where you want to be

(T) Timing

 Needed to synchronize internal and external resources

- Assured PNT
 - Non-GNSS mechanisms available to determine the position and maintain precision

Global Navigation Satellite System (GNSS) Features

Satellite Constellations:

- GPS: L1C/A, L1C, L1PY, L2C, L2P, L5
- Galileo: E1, E5a, E5b, E5 AltBoc, E611
- QZSS: L1C/A, L1C, L2C, L5, L611
- GLONASS: L1CA, L2CA, L2P, L3 CDMA
- Beidou: B1I, B1C, B2a, B2I, B311

(United States)

(European Union)

(Japan)

(Russia)

(China)

- Satellite Based Augmentation System (SBAS):
 - WAAS, EGNOS, MSAS, GAGAN etc
- RTK and RTK Networks

Jamming Sources

- Physical obstructions:
 - Tunnels, tall buildings
- Unintended Interference:
 - Space weather
 - Faulty equipment radiating on the GNSS bands
- Intentional Interference:
 - Easy to overpower the very weak GNSS signals
 - 1KW Jammer effective area 1m square Km

Peter Fiskerstrand, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Spoofing

 GNSS spoofing is the provision of GNSS-like signals, transmitted locally and coded to fool the receiver to think it is somewhere it is not

Thanks

